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Introduction

P the stability issue
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sive systems” Nonlinear Anal Hybrid Syst., vol. 51, no. 3, pp. 1962-1987, 2013.

[B Liu B, Hill DJ, Sun Z. “Mixed .#-dissipativity and stabilization to ISS for
impulsive hybrid systems” IEEFE Trans Circuits Syst-Exp Briefs., vol. 62, no. 8, pp.
791-795, 2015.

M the filtering problem

[B Pan S, Sun J, Zhao S. “Roust filtering for discrete time piecewise impulsive
systems” Signal Process., vol. 90, no. 1, pp.324-330, 2010.

[B Xu J, Sun J. “Finite-time filtering for discrete time linear impulsive systems”
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® the fault detection problem

B Li W, Yan Y, Bao J. Dissipativity-based distributed fault diagnosis for plantwide
chemical process. J Process Control. 2020; 96: 37-48.

B Zhong M, Xve T, Song Y, Ding SX, Ding EL. Parity space vector machine
approach to robust fault detection for linear discrete-time systems. I[IEEE Trans

Syst Man Cybern Syst. 2021; 51(7): 4251-4261.

¥

the results do not consider the impulsive phenomena.
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X deal with fault detection issue of linear discrete-time impul-
sive systems.




Method

In this article, we study the mixed dissipativity based fault
detection problem for a class of discrete-time impulsive systems.
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Dissipativity-based distributed fault diagnosis for plantwide chemical M)

processes” et

» a novel mixed fault sensitivity and mixed disturbance insensitivity condition;

mixed supply rate .
———— > mixed

» mixed fault sensitivity + mixed disturbance insensitivity
dissipativity condition;
» the novel mixed dissipativity based fault detection approach is developed for

discrete-time impulsive systems.
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Problem Formulations

System model

Tpr1 = Az, + Dfy + Ewg,

Tpt1 = Az, + Drfr, + E1w,,,
yr = Cry + Wi,

Yk, = Ok, + Wi,

» 11, Yi: state vector, system output;
» fi: fault signal to be detected;
» wy: external disturbance; =
| 2 A, C,D,FE, w, AI, Cr, D7, Ez, Wr:
known matrices with appropriate
dimensions.

k # kp,
k =k,
k£ ko,
k= Ky,



Problem Formulations

System model

1 = Az + Dfy, + Ewg, k # km,
T +1 = AZ«Tk;m + Dzfi. + Erwy,,, k= kpny,
yu = Cz + Wi, k # km,
Y, = Czag, + Wrfs,, k= kn,

» {kn}men: impulsive sequence (0 =ky < k1 < -+ < ky, < -++)
» T =: kmt1 — kn: impulsive interval
O0< 1y <7T<+400

where 7 is the positive constant which represents the maxi-
mum impulsive interval.



Problem Formulations

Aims

Construct a residual-based fault diagnoser such that

1) sensitive to the fault signal (fault sensitivity)
2) insensitive to the exogenous disturbance (disturbance

insensitivity)

@ fault sensitivity: the diagnostics unit can quickly and accurately
identify fault signals. (high accuracy)
@ disturbance insensitivity: the diagnostic device can effectively

filter out interference signals that are not related to the fault and
avoid false alarms. (high stability)



Problem Formulations

Aims

3) fault sensitivity + disturbance insensitivity conditions
mixed supply rate

mixed dissipativity conditions

» mixed supply rate: A function (v.(uc, yc), vd(ud, ya)) is called a
mized supply rate of impulse system if v, is locally integrable
and v, is locally summable




Problem Formulations

Fault diagnoser design

» First, a fault diagnoser can be designed as follows:

Th4-1

Ty +1 = Az, + Dzfi,, + Ezwi,,

Y =

Yk = CT Tk, + Wil

1
= Az + Dfy, + Ewy, : Tpp1 = A%y + L (yr — k) »
1 1 = Az, + LT Yk — i)
Czy + Wi, ' U = Cay,
1
1
1

Yk, = CT Ty, »

> Uk, Ui, the estimates of y; and y;, ;

» L, L7: the gains to be designed.
» Second, the residuals are defined by

e = M(yk — k), k # km,
Thyy = Mz (yp — ), k= km,

» M, Mz : the residual gain matrices to be designed as well.

X determine the matrices L, Lz, M, Mz.




Problem Formulations

Impulsive error dynamics

E Tp1 = Azy, + Dfy + Ew, Bpp1 = Ay + L (yr — Ur) , :
v ) 5,41 = Azay, + Dzfy, + Erwy,,, Bpp+1 = Azk, + L1 (Y, — Uk) 5 E
E yr = Czp + Wi, ok = Ciy, "
v Uk, = Czay, + Wz, Uk,, = Crly,,, E

N ex+1 = Aey + Ewy + Dfy — L (yx — ) , k # km,



Problem Formulations

Impulsive error dynamics

ex+1 = Aey + Ewy + Dfy — L (yx — W) , k # km,
kmt1 = Azer, + Erwi, + Dzfe,, — Lz (Yk — Uk) s K = k.

L Je= Aey, + Buwy, + Mfie, k # kp,
ek, t1 = Azey,, + Erwy,, + Mz, k = k.
A=A—-LC, A =A; — LyCr,M =D — LW, My = Dy — Ly Wr.

rk:M(yk—@k) N T’k:MCGk—f-MWfk, k}#km,
Thy = Mz (Y — Ur) Tk = Mz Creg,, + Mz Wzfy,, k= kp.



Problem Formulations

A

ims

@ Under zero initial condition and wy = 0, the effect of fault f; on the residual 7, and
1, should be sufficiently large, that is:

m

~

T T

DD £ R N 1 = A N [V e N (VM
=0 =0

k=ko+1,k#km k=ko+1,k#km

@ Under zero initial condition and f = 0, the effect of exogenous disturbance on the
residual should be minimized, that is:

T T

m m
Do ImlP P <A Y el D llewl®.
=0 =0

k=ko+1,k%kp, k=ko-+1,kkn




Problem Formulations

Threshold

A fault isolation threshold Jy, will be designed as:

1
A 3
T
J, = g r rs + E Ty, Tks ,
s=k—h,s#ks ks€[k—h,h]

Jth = sup J7"7
wElze,f=0

2([0,00),R;) is the space of square summable n-dimensional vector-valued func-

tions. The set ly. denotes the extended set of lo which consists of the functions

whose time truncation lies in lo.

B W. Li, Y. Yan, and J. Bao, “Dissipativity-based distributed fault diagnosis
for plantwide chemical processes,” Journal of Process Control, vol. 96, pp. 37-

48, Dec. 2020.



Problem Formulations

I, space

A sequence {wy} belongs to the lp space if the sum of its squared elements is finite:

oo
D Jwl? < o0
k=0

= wj; must be bounded and decay over infinite time.

lr. space

A sequence {wy} belongs to the lpe space if it belongs to the lp space over some finite time
interval. That is, there exists a finite time T such that:

T
D Jwl? < o0
k=0

= Iz, allows for signals that are energy-limited over finite periods but not necessaril
over infinite periods:

m = = e e = e = e = e = e = = = = = = = = = e = e = e = e e m = e e
In practical systems, external disturbances are often unpredictable, uncertain,

and may persist indefinitely. = lo ® e O]



Problem Formulations

Diagnosis

Based on the determined threshold J;;,, the faults can be detected
by comparing J,. with Jy, according to the following rule:

Jr > Jy, = with fault = alarm,
Jr < Jy, = no faults.
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Mixed Dissipativity Analysis For Fault Diagnosis

Mized dissipative

An impulsive system ¥ with input uy, € U, uy, € Uy, and output y, € Ve, yg,, € Vg is

mized dissipative under the mixed supply rate (S¢, Sq), if there exist storage functions
Ve(ze, k) and Vy(ze, k), Yk such that

AVe(zp, k) < Sc(Yrs ur), Kk # km, Vur € Ue,
AVy(zg, k) < Sa(Ykys Uk, ), k= km, Vug, €Uy,

where AV (zy, k) = V(zpy1,k+1) — V(ag, k).

@ fault sensitive case
the error dynamics without disturbances is mixed dissipative with the mixed supply
rate (Se¢, Sq), which defined as Sc(fi, 71.) = ||7&]|? — B2|Ifx]|?> and
Safions T) = 71 |12 = B2 fr |12
@ disturbance insensitive case
the mixed supply rates are designed as Sc(wy, 1) = ¥2||wi||?2 — ||7%]|? and
Sa(@ry Tr) = V2wt 17 = 7, |12



Mixed Dissipativity Analysis For Fault Diagnosis St

» @ There is no u in the model.

Selfir i) = llrl® = B2 fell?
Sd(fkm’ rkm) = Hrkm||2 - /82”fkm||2

Note: wuy represents exogenous inputs. Here, it represents either
faults fi or disturbances wy.
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Mixed dissipativity based system fault sensitivity design

Theorem 1

The error dynamics (2) without disturbances is mized dissipative
under the mixed supply rate (S, Sy) with S.(fi, 7)) = ||7%l> — B2/ ||?
and Sq(fis Thn) = |17 |12 — B2 fi,, ||%, if there exist matrices Y, Y7,
positive semi-definite matrices Z, Z7, a positive definite matrix P,
scalar 3 such that the following LMIs hold:

P PA-YC  PD-YW
I, = P+ CTZC cTzw >0, (3)
* WTZW — 21}
P PAr—Y7rCr PDr— Y7Wr ]
I, = P+ Cf Z:C CF Zr Wr > 0. (4)
* Wi Zz Wt — B |
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Mixed dissipativity based system fault sensitivity design

In this case, the gains of the desired diagnoser can be obtained as follows:

[ L=P'Y, L;=P 'Yy, Z=M"M, Z;=DM; M

The residual gains M and Mz can be obtained by factorizing Z, Zz.
EHA.

» Part 1. Mixed dissipative.
» Part 2. Mixed fault sensitivity.

Omitted here. O
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Mixed dissipativity based system disturbance insensitivity desig

Theorem 2

The impulsive error dynamics (2) without faults is mized dissipative
under the mixed supply rate (S, Sg) with S.(wi, 71.) = V2||wel|? — ||7%/|?
and Sy(wk,,, Tk, ) = V2|lwk,, [I* = |7, /1%, if there exist matrices V., Y7,
positive semi-definite matrices Z, Z7, positive definite matrix P, scalar
~ such that the following LMIs hold:

P PA-YC PE]
I = P-C'zZC 0 | >0, (5)
* 721_
P PAr— Y7Cr PE7]
Iy = P-ClZC: 0 | >0. (6)
* 721_
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Mixed dissipativity based system disturbance insensitivity desig

In this case, the gains of the desired fault diagnostic observer can be
obtained as follows:

L=P7'Y, Ly=P 'Yy, Z=M"M, Z;=DM;"M;

The residual gains M and Mz can be obtained by factorizing Z, Zz.
EH].

» Part 1. Mixed dissipative.
» Part 2. Mixed disturbances insensitivity.

Omitted here. O
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Simultaneous mixed fault sensitivity and disturbances insensitivi

design

Theorem 3

The impulsive error dynamics (2) satisfies the fault sensitivity,
disturbances insensitivity conditions simultaneously, if there exist
matrices Y, Y7, positive semi-definite matrices Z, Zz, a positive
definite matrix P, and scalars S, v such that the following LMIs hold:

max —
na B =

st. II{1 >0, Il >0 I'y >0, T'y > 0. (7)
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Simultaneous mixed fault sensitivity and disturbances insensitiv

design

In this case, the gains of the desired fault diagnostic observer can
be obtained as follows:

L=P'Y, Ly=P'Yy, Z=M"M, Z;y=M; M

The residual gains M and M7 can be obtained by factorizing Z,
Vs
UEM.
The proof is straightforward with the combination of Theorems 1 and
2. O
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Case Studies

Parameters
Tp1 = Az + Dfy + Ewy, k # kp,
Tpt1 = Azap, + Drfi, + Ezwi,, k= kn,
Yk, = Cran, + Wzf,, k= kp,

» coefficient matrix

0.6532 0.6169

1
: A7{0.3658 0.16} 4 7{0.2 o} B = —0.1} W1

' - y AT — sy DT — ) =4

1

' 0.8 0.7 0 0 -0.1

: D:{—1]’DI:LJ’C:[O.J’CI:{0.2}’E:{0.7}’WI:1'
1

1



Case Studies

Gains

» impulse sequence. interval

Calculate the LMIs (3), (4) and (5), (6) obtained in Theorems 1

and 2, respectively.

Table 1: Observer gains and other calculated variables

Variables B v M Mz P L

1.4036  0.2736 0.3768
S 5
Values 2.225 0.7136 4.5115 3.9875 [0.2736 0'3453] [2.843]
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Noise/Fault

» The system external noise

E wp = 0.4sin(%k). E

0.1, 20 <k <30, :
f(z) = . !
0, otherwise. '



Evaluation of J(k)

1.8 T T T

Fault occurs when 20<k<30
< 161 Fault Free
= —— Threshold

0.8 \5

0.6

Residual evaluation function
T
|

10 20 30 40 50 60 70 80 90 100 110 120
Time k

Figure 1: Residual evaluation function J(k)
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Mass-spring system

m1i(t) + (k1 + k2) 1 (t) — kaga(t) = F,
maGo(t) — k2q1(t) + k2g2(t) = 0,

F'=ma
no 0.0
|
K k
_N\/V\_
NN my my
R

oo | o0

Figure 2: Two-mass systems with constraint buffer



Mass-spring system

Case Studies

—> mu(t)

my

O O

—> myGu(t)

m -
ka(ai(t) —aa(t))

O O

u(t)

kuai(t)

—> mus(t)

m

-

O

ka(@i(t) —aa(t))

—> myG(t)

my

-

=

= mq(t) = —khaq(t) — k(a(t) — @) +F

ka(@i(t) —ga(t))
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Parameters

m1qi(t) + (k1 + ko) 1 (t) — kaga(t) = F,
maGo(t) — k2qi(t) + k2g2(t) =0,

» coeflicient
' my = 1.5kg, mp = 0.5kg, ky = IN/m, ky = 0.5N/m.

> F'is the external force and represents the fault signal in this
mass-spring system.

. {0.088N, 50 < k<55,

0, otherwise.



Case Studies

Parameters

» the loss of kinetic energy due to a collision
m1 i (tm + 1) + Mot + 1) = ma @1 (tm) + m2e(tn),
@ (tm +1) — @(tn + 1) = =0(q1(tm) — @(tm)), (8)

where ¢ € [0, 1), is the coefficient restitution.

[@ Haddad WM, Chellaboina V, Nersesov SG. Impulsive and Hybrid Dynamical
Systems: Stability, Dissipativity, and Control. Princeton University Press; 2006.

> z(t) = [q1(t), @ (1), g2(1), (1))
the collision occurs when z € J = {x; — 23 =1}

> z;: the i-th component of the state z(t)
» [: the total buffer length

> Y= [xl—r7z:;r]—r



Parameters

where

1
1 .
1 N z(t) = Az(t) + DF, k # kmn, )
1
1 Ty +1 = AL Tk, k= km,
1
1
roo1 0 0 0
0 (148)mg 0 (1438)mg
Ar = T Tmymg my +mo
z 0 0 1 0
(14+8)mq 0 (148)mq 0
L my+mg T ompFmy
r o 1 0 0 0
_kitk g k2 0 1
my m1 -
A 0 o o 1| P=|7¢
L3 0o -t o 0
Ly g
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Parameters

» Let the sampling interval S = 0.5s

'
1 1
: {a‘c(t) = Au(t) + DF, k# kn, _ {ml = Awe+ Hiy h#bn, 0
: g, +1 = Az, k= km, T, +1 = Azy,, k= km, :
L e e e mmeemeeemeeemeeemmeemeeemeesmeesmeeemmeem--—- :
where A = 4%, H = (fos eAtdt> D

» Noise

1

. tpy1 = Az + Hfy + Bwy,  k # kn,
! =

' Ty +1 = Az Tp,,, k= kp,
1
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Gains

By solving the LMI (7), the feasible solutions are obtained in
Table 2.

r

Table 2: Observer gains and other calculated variables

Variables 154 ~y M L
—0.0938
—0.4743
0.8897
1.6210

Values  0.7985 0.5698 1.146




Evaluation of J(k)

0.3 T T T T T T
= Fault occurs 50<k<55
— Fault free
=
= 025 — Threshol d 4
c
2
T o2t 1
j
2
j
,g 0.15 1
©
3 k=53
o
3 o1f 1
©
3
=
3005 - 1
= W
0 . . L L L L
20 30 40 50 60 70 80 20
Time k

Figure 3: Residual evaluation function J(k)
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